Non-microstates free entropy dimension for groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-microstates Free Entropy Dimension for Groups

We show that for any discrete finitely-generated group G and any self-adjoint n-tuple X1, . . . , Xn of generators of the group algebra CG, Voiculescu’s non-microstates free entropy dimension δ(X1, . . . , Xn) is exactly equal to β1(G) − β0(G) + 1, where βi are the L Betti numbers of G.

متن کامل

Dimitri Shlyakhtenko Lower Estimates on Microstates Free Entropy Dimension

By proving that certain free stochastic differential equations with analytic coefficients have stationary solutions, we give a lower estimate on the microstates free entropy dimension of certain n-tuples 1. In particular, for small q, q-deformed free group factors have no Cartan subalgebras. An essential tool in our analysis is a free analog of an inequality between Wasserstein distance and Fis...

متن کامل

SOME ESTIMATES FOR NON-MICROSTATES FREE ENTROPY DIMENSION, WITH APPLICATIONS TO q-SEMICIRCULAR FAMILIES

We give an general estimate for the non-microstates free entropy dimension δ∗(X1, . . . , Xn). If X1, . . . , Xn generate a diffuse von Neumann algebra, we prove that δ∗(X1, . . . , Xn) ≥ 1. In the case that X1, . . . , Xn are q-semicircular variables as introduced by Bozejko and Speicher and qn < 1, we show that δ∗(X1, . . . , Xn) > 1. We also show that for |q| < √ 2−1, the von Neumann algebra...

متن کامل

A Microstates Approach to Relative Free Entropy

His approach involved non-commutative Hilbert transform and is algebraic in nature. In the case that B = C, this quantity is denoted χ(X1, . . . , Xn), and its properties are very similar to those of the free entropy χ(X1, . . . , Xn) introduced by Voiculescu in [4] using microstates; in fact, it may very well be that the two quantities coinside. Using the microstates approach to free entropy, ...

متن کامل

Maximality of the Microstates Free Entropy for R-diagonal Elements

An non-commutative non-self adjoint random variable z is called R-diagonal, if its ∗-distribution is invariant under multiplication by free unitaries: if a unitary w is ∗-free from z, then the ∗-distribution of z is the same as that of wz. Using Voiculescu’s microstates definition of free entropy, we show that the R-diagonal elements are characterized as having the largest free entropy among al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GAFA Geometric And Functional Analysis

سال: 2005

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-005-0513-z